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ABSTRACT

A	   set	   of	   algorithms	   have	   been	   developed	   for	   the	   five	  
North	  American	  Great	  Lakes	  that	  utilizes	  MERIS,	  MODIS,	  
or	   SeaWiFS	   satellite	  data	   to	   estimate	   chlorophyll	   (chl),	  
dissolved	   organic	   carbon	   (doc),	   and	   suspended	  
minerals	   (sm),	   the	   three	   primary	   Color	   Producing	  
Agents	   (CPAs).	  The	  algorithms	  utilize	   a	   specific	  hydro-‐
optical	   (HO)	   model	   for	   each	   lake.	   The	   HO	   models	  
provide	   absorption	   functions	   for	   all	   three	   CPA	  
components	  as	  well	  as	  backscatter	  relationships	  for	  the	  
chl,	   and	   sm	  and	  were	   generated	  using	   in	   situ	   inherent	  
/apparent	   optical	   (IOP/AOP)	   data	   collected	   with	  
coincident	   water	   chemistry	   (concentration)	  
measurements.	   These	   new	   algorithms	   provide	   more	  
accurate	   chl	   values	   then	   those	   obtained	   using	   the	  
standard	  OC3	  NASA	  MODIS	  retrieval	  when	  compared	  to	  
in	   situ	   cruise	   observations,	   as	   well	   as	   providing	   the	  
additional	   information	   on	   doc	   and	   sm.	   The	   suite	   of	  
atmospheric	  correction	  algorithms	   for	  MODIS	  was	  also	  
evaluated.	  In	  general	  the	  standard	  NASA	  algorithm	  does	  
an	  adequate	  correction	  all	  of	  the	  time.	  
	  
1.	  	  INTRODUCTION	  
	  
The Great Lakes account for approximately 20% of the 
Earth’s surface fresh water and supply drinking water for 
40 million United States and Canadian people [1].  Lakes 
Michigan and Huron in particular have undergone major 
changes in lower food web production as witnessed by 
decreases in average chlorophyll, primary productivity, 
Diporeia, and fish populations [2,3].  Lake Erie and to a 
lesser extent Lake Ontario continue to exhibit a multiple of 
Harmful Algal Blooms (HABs) each summer [4,5]. Remote 
sensing observations from satellites allow for the synoptic 
long term monitoring of all the Laurentian Great Lakes to 
document changes in water quality parameters and primary 
productivity as a result of the climate, anthropogenic, and 
invasive species forcing functions. 

Waters in the Great Lakes and coastal ocean areas, known 
as the Morel and Prieur case II waters, have optical 
properties that are influenced not only by phytoplankton, 
but also inorganic terrigenous particulate matter in 
suspension (sm) and dissolved organics (doc). Note that the 
cdom color component retrieved by this set of algorithms is 
simply a portion (approximately half) and is not the same 
as doc. In the Great Lakes and in particular the nearshore, 
bays, river mouths, and areas of concern (AOCs) the 

content of sm and doc in the water column is abundant 
enough to compete with the phytoplankton in influencing 
the resultant composite optical properties, thus creating 
optically complex water [6]). 

2.	   	   HYDRO-‐OPTICAL	   MODEL	   GENERATION	   AND	  
ALGORITHM	  DESCRIPTION	  
When observing case II waters from space, it is impossible 
to retrieve the concentration of a single component like chl 
without also inferring the content of the other major water 
constituents determining the overall color, the so called 
color producing agents (CPAs) [7].  The new CPA 
algorithms presented here utilize a Levenburg-Marquardt 
(L-M) multivariate optimization procedure [8,9] to estimate 
chl, cdom, and sm based on hydro-optical (HO) models 
generated using cruise data from each of the Great Lakes. 
HO models were generated for each lake using 
simultaneously obtained optical water property data and 
measurement of chl, cdom, doc and sm using standard 
methods.  The algorithms are non-satellite specific and the 
number of spectral bands utilized is variable depending on 
application. To avoid inadequate retrieval results, the 
algorithm identifies and discards pixels with poor 
atmospheric correction and/or water optical properties 
incompatible with the applied HO models.  Thus pixels in 
optically shallow water (reflected light from the lake 
bottom) are discarded during the retrieval process. The 
algorithms are in the process of being modified to estimate 
CPAs in shallow water. 
 
The overall algorithm and initial evaluation is well 
described by [7] and by [10] and will not be repeated here. 
In summary, the model assumes the remote sensing 
reflectance (RSR) can be calculated from the specific 
absorption and backscattering coefficients, along with 
concentrations of each CPA: 

RSRi = f(ai,bi)ai = aH20,i + Cchlachl,i + Cdoc,iadoc,i + Csmasm,I  (1) 

                                  bi = bH20,i + Cchlbchl,i + Cdocbdoc,i + Csmbsm,i 

Where, 
C = Vector representing concentration of each CPA 
𝑎! = Bulk absorption coefficient for each CPA at band i 
𝑏! = Bulk backscattering coefficient for each CPA at band i 
𝑎!,!  = Specific absorption coefficient for each CPA j at  
band i.  
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𝑏!,! = Specific backscattering coefficient for each CPA j at 
band i. 
 
As the above equations indicate, specific absorption and 
backscattering coefficients for each CPA are needed for 
each satellite spectral band utilized. The table of specific 
backscattering and absorption coefficients is referred to as 
the HO model.  Given an accurate HO model can be 
generated for a body of water, CPA concentration images 
can be produced from satellite reflectance images using a 
multivariate inverse procedure. As mentioned previously 
this algorithm approach uses the Levenburg-Marquardt 
procedure for finding a solution to the inverse radiative 
transfer problem. In this procedure a CPA concentration 
vector is found which minimizes the error between the 
measured and calculated RSR.  After an initial educated 
estimate for the CPA concentrations, the L-M procedure 
converges on a minimum in the error function using: 

Σ 
   total_bands 

( 
Si-RSRi 

 )2 = Error                      (2) 
 

   i=1 Si  

Where, 
Si = Measured remote sensing reflectance from satellite for 
band i 
RSRi = Calculated remote sensing reflectance from CPA 
concentrations, HO-model for band i. 
	  
3.	  	  ALGORITHM	  RESULTS	  
	  
Based on the IOP measurements it was determined that a 
lake specific HO model was needed for each of the five 
Laurentian Great Lakes. In this section we present example 
results of the CPA algorithm for Lake Michigan and 
compare the retrievals to the Environmental Protection 
Agency (EPA) in situ observations of chl and where 
available cdom/doc and sm. The EPA does not routinely 
measure doc, cdom or sm. In the case of cdom we utilized 
the Upstate Freshwater Institute (UFI) measurements not 
used in the HO model development to show that CPA 
produces reasonable values. The new algorithm results 
were also compared to the standard NASA OC3 retrievals. 

Fig.1 is an example of the new Lake Michigan CPA 
algorithm applied to a 1 km spatial resolution MODIS 
image collected on August 8, 2010. Hatched areas on the 
CPA retrieval image indicate no retrieval information, 
which is a result of clouds, poor atmospheric correction, or 
significant lake bottom return in optically shallow water. 
The figure shows the comparison of the CPA chl map to 
the standard NASA OC3 chl retrieval for the same MODIS 
image.  The NASA OC3 algorithm was selected because 
this is the default chl model for case II waters. The EPA 
stations from a cruise (August 2 to August 5, 2010) are 
shown as red dots on the images. This August 8, 2008 
image pair was the closest cloud free observation 
corresponding to the cruise dates. The maximum chl values 

generated by the CPA algorithm was 3.0 µg/L while the 
maximum value for the OC3 chl estimate was 400 µg/L. 
NASA cautions users to discard all retrievals in excess of 
100 µg/L. Further examination of the NASA and CPA 
retrieval of chl indicates lower chl values are produced by 
the NASA OC3 algorithm in the open water portion of the 
lake, when compared to the CPA values. The CPA 
algorithm in its present form does not produce retrievals in 
optically shallow water, hence the high OC3 chl values 
along the shore in optically shallow water are not visible in 
the CPA product. Close examination of the OC3 retrieval 
reveals that the nearshore chl estimates are artificially very 
high, ranging upwards to 400 µg/L. These high values are 
most likely a result of the NASA algorithm interpreting 
high shallow water reflectance values as phytoplankton in 
the water column whereas these high reflectance values are 
actually the result of reflection off the lake bottom (sand 
and benthic algae) and contributions of cdom and sm in the 
water column.  

Table 1 compares the EPA in situ chl values (red dots on 
Fig. 1) to the CPA and OC3 derived estimates. For both the 
CPA and OC3 estimates the same 3 X 3 km area was 
averaged over the EPA/GLERL locations. The table of 
values confirms the visual observations in Fig. 1, namely 
the OC3 produces chl estimates that are consistently lower 
than the EPA/GLERL cruise measurements. On the table, 
negative values indicate an under prediction from either of 
the two satellite retrieval methods. The average difference 
between the EPA/GLERL truth and CPA chl retrieval was 
0.03 µg/L and 0.24 µg/L for the OC3. Minimum and 
maximum differences as well as the range of chl values 
produced by each algorithm are also presented in the table 
indicating improved accuracy for the CPA approach. A 
large box (see red outline on Fig.1) was drawn around the 
EPA/GLERL stations to compare the average chl value for 
this portion of the lake. The EPA/GLERL station average 
was 0.66 µg/L versus 0.69 µg/L for the CPA results and 
0.42 µg/L for the OC3 results.  

Fig. 2 shows a MERIS true color image of Lake Michigan 
taken on August 28, 2011.  Fig. 3 is an example of the CPA 
algorithm applied to the MERIS satellite data collected 
over Lake Michigan. In this August 28 image, with a 
spatial resolution of approximately 330 meters, finer detail 
in the chl, doc, and sm concentration maps can be 
observed. The higher chl values along the Lake Michigan 
shore are typical for this time of year [11]. The sm 
concentration is relatively low throughout the lake with the 
exception of re-suspension as the result of  wave action 
around the southern shore (red area).  The doc values are 
also quite low at this time of year with the exception of the 
nearshore areas of the lake and Green Bay. 

4.	  	  CONCLUSION	  
	  
A comprehensive set of IOP measurements with 
corresponding in situ measurements of chl, doc, cdom, sm, 
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and total suspended solids (TSS) have been assembled into 
a database for all the Great Lakes. This data set developed 
over several years of research cruises indicated the need for 
separate HO models for each of the Great Lakes to obtain 
the required retrieval accuracy. The database that spans 
nearly two decades of observations also provides insight 
into how the optical properties of the Great Lakes have 
changed due to anthropogenic, invasive species 
introduction and climate change forcing. 

The new CPA algorithms for Lakes Michigan, Huron, and 
Superior are quite robust, with the estimates of chl 
comparing favorably to the near coincident EPA chl values. 
The cdom and sm derived values produced simultaneously 
during the retrieval process are within the correct range, 
and where coincident data are available, they are in good 
agreement. Although not shown here, the Lake Erie CPA 
produced estimates of chl, doc, and sm are good for the 
central and eastern portion, but under-estimated chl in the 
Western Basin. To achieve a more accurate retrieval in the 
western basin, a separate HO model maybe required or the 
existing Erie HO model updated with new backscatter 
coefficients for the chl and sm constituents. Also not shown 
in this paper, the Lake Ontario chl concentration values for 
the spring and late summer observations reveal the 
complexity of this Lake with low chl values reported by the 
EPA of approximately 1 µg/L in the spring to values of 4.5 
µg/L in the late summer. The CPA algorithm under-
predicted the chl in the spring, but did much better in late 
summer, correctly predicting the chl values as well as 
observing a whiting event via an increased value of the sm 
[12]. 

Overall, the CPA algorithm provides more accurate chl 
estimates than the standard NASA OC3 retrievals. The 
NASA estimates in the optically shallow water are not 
reliable, most likely the result of light being reflected off 
the lake bottom and the fact that nearshore waters of the 
Great Lakes are case II water, namely chl, doc, and sm 
constituents are in significant concentrations. Satellite 
derived primary productivity estimates will be more 
accurate using the new CPA algorithm than the OC3 
algorithm based on the more robust chl estimates. The 
NASA chl estimates for Lake Erie are not particularly 
useful because this lake has major CPA elements in 
addition to chl. 
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Figure	  1.	   	  Comparison	  of	  CPA	  and	  NASA	  OC3	  chlorophyll	  
retrieval	   for	   a	  MODIS	   Aqua	   image	   of	   Lake	  Michigan	   on	  
8/8/2010	  
	  
Table 1. Comparison between August 8, 2010 CPA and 
OC3 chlorophyll retrievals and EPA cruise observations 
for the same satellite image. For each EPA site (see figure 
1) the CPA and OC3 derived chl value are presented along 
with the difference in respect to the EPA truth. Averages of 
the values and differences are also presented on the table. 
On the table, a negative indicates the given algorithm 
under predicted the chl value in respect to the EPA truth. 

Station 

EPA 
CHL 

(µg/L) 

CPA 
CHL 

(µg/L) 

CPA 
vs. 

EPA 
(µg/L) 

OC3 
CHL 

(µg/L) 

OC3 
vs. 

EPA 
(µg/L) 

MI 17 0.51 0.81 0.30 0.37 -0.14 
MI18M 0.61 0.80 0.19 0.43 -0.18 
MI 19 0.54 0.55 0.01 0.28 -0.26 
MI FE 0.63 0.73 0.10 0.49 -0.14 
MI 23 0.55 0.59 0.04 0.30 -0.25 
MI27M 0.55 0.56 0.01 0.30 -0.25 
MI 34 0.60 0.68 0.08 0.44 -0.16 
MI 32 1.27 0.76 -0.51 0.71 -0.56 

Avg. 0.66 0.69 0.03 0.42 -0.24 
 

	  
Figure	  2.	  	  MERIS	  true	  color	  image	  of	  Lake	  Michigan	  on	  
8/28/2011	  
	  
	  

	  
Figure	  3.	  MERIS	  CPA	  (chl,	  doc,	  sm)	  retrievals	  for	  Lake	  
Michigan	  on	  August	  28,	  2011.	  
	  
	  
	  


